What is Machine Learning?

Share on facebook
Share
Share on linkedin
Share
Share on twitter
Tweet
aiii

Machine learning is an application of artificial intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed. Machine learning focuses on the development of computer programs that can access data and use it to learn for themselves.

The process of learning begins with observations or data, such as examples, direct experience, or instruction, in order to look for patterns in data and make better decisions in the future based on the examples that we provide. The primary aim is to allow the computers to learn automatically without human intervention or assistance and adjust actions accordingly.

But, using the classic algorithms of machine learning, the text is considered as a sequence of keywords; instead, an approach based on semantic analysis mimics the human ability to understand the meaning of a text.

Some Machine Learning Methods

Machine learning algorithms are often categorized as supervised or unsupervised.

  • Supervised machine learning algorithms can apply what has been learned in the past to new data using labeled examples to predict future events. Starting from the analysis of a known training dataset, the learning algorithm produces an inferred function to make predictions about the output values. The system is able to provide targets for any new input after sufficient training. The learning algorithm can also compare its output with the correct, intended output and find errors in order to modify the model accordingly.
  • In contrast, unsupervised machine learning algorithms are used when the information used to train is neither classified nor labeled. Unsupervised learning studies how systems can infer a function to describe a hidden structure from unlabeled data. The system doesn’t figure out the right output, but it explores the data and can draw inferences from datasets to describe hidden structures from unlabeled data.
  • Semi-supervised machine learning algorithms fall somewhere in between supervised and unsupervised learning since they use both labeled and unlabeled data for training – typically a small amount of labeled data and a large amount of unlabeled data. The systems that use this method are able to considerably improve learning accuracy. Usually, semi-supervised learning is chosen when the acquired labeled data requires skilled and relevant resources in order to train it / learn from it. Otherwise, acquiring unlabeled data generally doesn’t require additional resources.
  • Reinforcement machine learning algorithms are a learning method that interacts with its environment by producing actions and discovering errors or rewards. Trial and error search and delayed reward are the most relevant characteristics of reinforcement learning. This method allows machines and software agents to automatically determine the ideal behavior within a specific context in order to maximize its performance. Simple reward feedback is required for the agent to learn which action is best; this is known as the reinforcement signal.

Machine learning enables the analysis of massive quantities of data. While it generally delivers faster, more accurate results in order to identify profitable opportunities or dangerous risks, it may also require additional time and resources to train it properly.

Share on facebook
Share
Share on linkedin
Share
Share on twitter
Tweet

Related Posts

Authors

kyel
Kyle
a
Jin

About DCC

We believe in the idea of awesome technology education for your children’s future. Our mission is simple, to create mind-blowing tech experiences that inspire students to create the future. Whether it’s programming their own videogame, animating their own cartoon, or building a robot, our industry professionals can help make your child’s technical and artistic dreams a reality.